AD-AO61 714 COMPUTER SCIENCES CORP EL SEGUNDO CA

UNCLASSIFIED

IMPROVEMENTS TO JOCIT, (U)
OCT 78 T DEVINE» L HYDE.

H MCCOYr R RUSHALL
RADC=TR=78=144

F/6 9/2
F30602=76=C=0342

LEVEL

RADC-TR-78-144
Final Technical Report
October 1978

IMPROVEMENTS TO JOCIT

T. DeVine
L. Hyde
H. McCoy
R. Rushall

ADAQ61714

Computer Sciences Corporation

2

DDC FILE copy

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

.t

This report has been reviewed by the RADC Information Office (0I) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nationa.

RADC-TR-78-144 has been reviewed and is approved for publicationm.

APPROVED: Ww W

RICHARD M. MOTTO
Project Engineer

MR 27 et U nomaves

WENDALL C. BAUMAN, Ceolonel, USAF
Chief, Information Sciences Division

- 4
FOR THE COMMANDER: il o~ A

« “"\'AL

‘/JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee 18 no longer emploved by your organization,
please notify RADC (ISIS) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list,

Do not return this copy. Retain or destroy.

Ny

UNCLASSIFLED

SECURITY \,hMN\ ATION OF YIS PAGE MWhen Data Enieced)

" // REPORT DOCUMENTATION PAGE snpi AR INSTRUCTIONE

‘\.‘ GOVY ACCESSION NO| 3 RECIPIENT'S CATALOG NUMBER

—1) SO ERSY R B s
4 TITLE and Subtitie) ., |* TYPEO¥ RERORT @ PENDD COVEweD™
e e Al Final Technical Repert,
IMPROVEMENTS TO JOCLT, l ul 76 —Mar 78]
g S PRAPORYING ORG REPORT NUMBE R
4 EE T . N/A]
B R el L LR R A e s ————— 8 CONTRATY OR GRANT NUMBER|) T
~ j / / ;
T. DeVine H. McCoy | /C“ » s el e rhal)
L. Hvde R. Rushall gl F30602-76-C-0342 1
) S oS - S B SR
. et e 1 L XL T AR
Computer Sciences Corporation
220 Continental Blvd « | 63728F .
Fl Segundo CA 90245 (/=) 55500839 & L i
[CONTROLLING OF FICE NAME AND ADDRESS S 112, RERORT Dave
/ 4

/7 /[October 1978 /
Rome A{r Development Center (ISIS) N ‘Wﬁ

Griffiss AFB NY 113441 = = el R R R BE NG SR | QTR Sl it Xl
MONITORING AGENCY NAME & AODRESS, (f Jdittecent from Controlling Ottice) | /8 SECURITY CLASS (of this repart)
r R
Same L | UNCLASSIFLED v
N~/ / 18a DECL ASSIFICATION DOWNGRADING
[=14 SUMEDULE
S———— e N/A L
16 OISTRIBUTION STATEMENT (of this Report!
Approved for public release; distribution unlimited.
I 7 DISTRIBUTION STATEMENT (of the ahstract entered (n Block 20, It ditferent from Report)
Same
18 SUPPLEMENTARY NOTES
RADC Project Fngineer: Richard M. Motto (1S18)
H. TREY WORDS (Continue on reverse aide (f necessar and rdentify by Bock number)
JOVIAL
Compilers
Optimizers
SYMPI
CENESTS _
[0 ABSTRACT (Continue an reverss side It necessary end (dentify by Black nuntber)
Although the JOVIAL Compfiler Implementat{on Tool (JOCIT) produced the most
I3 1ike™ JOVIAL compiler buflt to date, the Afr Force was not at liberty to
develop compilers for other svstems because of the proprietary nature of the
JOCIT module, CENESIS. The intent of this eftfort was to lease CENESIS and to
make varfous i{mprovements to JOCIT. These {mprovements {ncluded tortitving
the JOCIT optimizer with state-of-the-art optimizing features. For the most
part, this effort accomplished the above, but resulted (n the development of
DD ' ai™y 1473 E0imion OF 1 NOV 68 1S 0BSOLETE UNCLASSIFLED
SECURITY CLASSIFICATION OF THIS PAGE (When Dara Kncered)
3) \ ¢ O
<L 420 N i1 9 ()4 O
AW ! L
— R
e ————- -

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

1 two separate optimizers.

Additional improvements included optimizing the
SYMPL compiler module of JOCIT and implementing an ASCII and floating point

double precision data processing capability in the JOCIT produced compilers.

LEVEL

"

amEmI
([} Wiite Sectioe o D D C
59 wtt st /00
e B IR
TIEIATION. .o
5 NOV 30 1978
PISTRIGVTION/AVATLASRITY 0000 L;)u U Ig
WL AVAIL /o SPRRML_ D
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
e 5 e -

EVALUATION

Because of the wide acceptance of RADC's JOVIAL Compiler
Implementation Tool (JOCIT), demands were made on the Air Force
to secure full rights to the JOCIT system. Consequently, this
effort, entitled, "Improvements to JOCIT'", was initiated to
lease the proprietary meta-compiler, GENESIS, giving the Air
Force complete control of the tool and to incorporate state-of-
the-art optimization technqiues into JOCIT and the JOCIT
building language, SYMPL.

This effort fell short of RADC's expectations, insofar as
two JOCIT optimizers were delivered instead of one; however, a
DOD "first" was realized in creating a 99-year software lease
with Computer Sciences Corporation for the rights to GENESIS.
In addition to the above, this contract served as a vehicle for
producing double precision floating point and ASCII data
handling capabilities for the JOCIT system and initiated the

updating of the JOVIAIL J3 specification, MIL-STD 1588.

«_,@Ap[}llw

RICHARD M. MOTTO
Project Engineer

iii/iv

v

sidatac

INTRODUCTION AND SUMMARY

The '"Tmprovements to JOCIT' contract was awarded to improve the operation and
versatility of the JOVIAL Compiler Implementation Tool (JOCIT) so that it would be
more practical and conducive to use in a central Higher Order Language (HOL) con-
trol facility. JOCIT is operational at Rome Air Development Center (RADC) at
Griffiss AFB, New York and peiinits thie genoration of high quality JOVIAL (J3)

compilers.,

Initially the contract called for the transfer of the GENESIS Meta-Compiler to oper-
ate on the RADC HIS 600/6000 computer complex. GENESIS is a Computer Sciences
Corporation proprietary system for producing language syntax tables suitable for

use in certain types of syntax-directed compilers from a convenient syntax descrip-
tion language. Also, the SYMPIL compiler (the language in which the majority of

the modules in the JOVIAL and SYMPI. compilers are written) was to be modified

so that more of the computer independent portions of the compiler resided in the
"front-end''. Additional optimization techniques were to be added to the SYMPIL com-

"

piler. Finally, optimization techniques such as "code-straightening' and 'dead-

variable analysis' were to be added to the JOVIAL compiler.

Subsequently the contract was modified to include the addition of a double precision

floating point capability not previously available in the JOVIAL compiler and to re-

write the JOVIAL (J3) MIL-STD-1588 dated 30 June 1976, to reflect the double pre-
cision floating point format and all other updates resulting from the JOCIT imple-

mentation of JOVIAL,

The installation of GENESIS was accomplished with virtually no problems and will
not be discussed further in this report. The rewrite of the MIL-STD-1558% was much
more extensive than originally nuti'cipntml. The changes were of such a magnitude

that the entire document was renumbered and completely retyped.

The changes to the JOVIAL optimizer were more complex and required considerably
more effort than was initially thought necessary. Originally the plan was to add the

new optimizations into the existing optimizer. However, after some study, this plan

was abandoned in favor of producing a new optimizer which would replace the existing

1

T A W I J

one. This decision was partially based on the fact that the existing optimizer was
somewhat unstable, particularly with large programs. Therefore it was believed
that major modifications to the existing optimizer might increase the instability to
an unacceptable level and require more effort to correct the situation than would be
expended in rewriting the optimizer. Rewriting the optimizer was begun with the
new optimizations such as code-straightening and dead-variable analysis. After pro-
ceeding with this plan for several months, it became increasingly obvious that there
was neither enough time or money to complete an entire replacement for the old
optimizer. In order to provide the maximum possible optimizations for JOVIAL,

a new plan was adopted. The old optimizer would be left as it was and the new opti-
mizations would be added as a separate phase. Additionally it was decided to permit
the old optimizer phase and the new optimizer phase to be run optionally and inde-
pendently of one another. The only restriction to the optimizers is that the old opti-
mizer, if it is run, must run before the new optimizer., Even adopting this method

required considerably more time and manpower than was originally contracted.

A considerable amount of testing was accomplished on the new optimizations, In
addition to the JOVIAL Compiler Validation System (JCVS) tests, there were four-
teen Strategic Air Command (SAC) programs which could not be run through the old
optimizer without fatal errors, At the conclusion of the optimizer testing, all of the
fourteen SAC programs had at one time or another been successfully optimized
through the new optimizer. Also, twelve of the fourteen SAC programs had been
successfully compiled through the old optimizer thanks to some changes made by a
former employee of Computer Sciences Corporation, It was not possible to do testing
on the SAC programs with the final compiler delivered, because they were de-

leted from the RADC Computer Svstem. The new optimizer handled all the JCVS
tests with the exception of the large Class 1tests. Five of these six tests had pro-
blems, primarily in the area of limitation of table space. However, two of these
five tests do compile when using both optimizers. Appendix A of this report shows
the time of compilation and object program size of the various modes of optimization

for the JCVS tests and the SAC programs. Generally there is improvement in the

e

-) - B TRy TS e S, 25 NN ot
i LA —— -

optimized progrvam sizes with the new optimizer. I'here remain, however, a
aumber of improvements which would add to the efficiency of the compiled programs,
Phese include completion of redistribution and the addition of strength veduction,
test replacement, variable overlay, vegister allocation and poeneralized name defind

tion ‘use analvsis,

A number of moditications were made to the SYMPL compiler to improve its opera
tion. Uhe most noticeable was changing this compiler trom two phases to three
phases, This reduced the core size requived tor a SYMPL compilation trom 43k to
A6R. AL the same time new optimizations were added and the compiler was made
more portable by reareanging machine dependent code into fewer modules, Testing
of the new SYMPL compiler was very extensive, including compiling the SYMPL
modules through itselt to ensure the compiler was stable, Additionally, all the
JOVIADL modules written in SYMPL were recompiled and linked into a test compiler
that executed the JCVS tests as well as the JOVIAL compiler produced by the

old SYMPL compiler.

Ihe tinal change to JOCTE accomplished under this contract was the addition of a
double prectsion capability to the JOVIATL compiler, This also necessitated the
recognition of double precision by the SYMEP U compiler, Changes were requived
throughout the JOVIATL compiler including the analysis, allocation, divect code,
code generator and editor phases asowell as the run time libeary, Festing was
accomplished by temporary changes to the JOVS tests, Phe results of these tests
indicate that the double precision capabnlity s now o sobid part of the JOVIAL com
piler and can be used contidently, However, permanent double precision testing

should be added to JOVS tor tuture compiler verttication,

Fhe final result of this contract was the production of a new JOVIAD compiler which
ix superior to the previous one. Phe amount of time and ettort required to achieve
this was underestimated and resulted in fewer optimis ations than werve oviginally
anticipated, Several time extensions were also vrequived, Phe entive conteact was

accomplished on terminals at the contractors tacihity with the exception of two man

W

weeks at RADC during final testing., The Time Sharing System (TSS) facility of the
GCOS operating system for the Honeywell 6000 series computer was uscd through-
out the contract, While this arrangement was generally satisfactory, the lack of a
remote high speed printer capability definitely hindered progress, This was espe-
cially true during the final debugging stages, Large listings were sent by air freight
from RADC on a daily basis, but this usually resulted in a two or three day turn-

around period,

During the course of this contract, a number of requests were received concerning
bugs in the compiler, particularly in the optimizer. However, the contract did not
cover maintenance on the compiler and there was neither the time nor funds avail-
able to investigate these reported problems, Assuming that JOVIAL {J3) will con-
tinue to be used for some time, there definitely should be an on-going maintenance
program for JOCIT,. This could be accomplished either through an outside contrac-
tor or in-house if the talent is available. However, without a centralized ro-ponsible
authority for future development and maintenance, the optimum usefulness ot this

valuable tool will not be realized.

— - ‘
TN . e ————— e
: :
-

SYMPL LANGUAGE ENHANCEMENTS

In order to make the JOCIT SYMPL Compiler more portable and more useful, a
number of enhancements have been implemented. The enhancements are described

in this section,
COMPILER DIRECTIVES
Compiler directives have been redefined as described in the tollowing paragraphs

Conditional Compilation

skip divective = ISKIP block indicators
begin directive := 'BEGIN block indicator:
end directive = PEXND block indicators:
block indicator = Nottor !

Al]-——0 [
letter = A through 7

BEGIN and END directives having the same blocek indicator delimit a block ot condit=
ionally compiled code. If a skip directive occurs prior to the block and has the same

block indicator, the code within the block is not compiled: otherwise the code is
’

compiled.
Listing Options
o)
list directive := PLIST) VOFE! default is ON
L
g ‘ T ey LISTL .
copy dirvective = 'COPY)’ o | file name:

Listing of source code during compilation is handled in a hicvarchical manners The
highest level is the compiler switches, 1 the NOLIST option is selected, no listing

will occur regardless of what List divectives may or may not be imbedded in the source,
I'he next leved of Listing is the program itselt, Lower levels ave COPY tiles and
nested COPY tiles. I a PLIST, OFEF is encounterad at any level, listing divectives

in lower levels have no effects A TCOPY is considered at a higher level than the

code it reters to. Theretore, all listings will be suppressed until the code is

— W < - ves R SR i

cncountered. A TCOPY, LIST would then allow listing control within the copy file
to have effect,

DOUBLE PRECISION

Double precision ITEMs may be declared in one of two ways:

) R mantissa | '
P A

mantissa := integer number

double precision item = [TEM name

I the number indicated tor the mantissa in a veal item is greater than the number
ol bits in the mantissa ol a single precision number of the target machine, the item

is promoted to double precision,

Double precison constants are identical to single precision constants except that 'E'

is replaced by "D to indicate the exponent,
COMPILER PACKED ARRAYS

In order to have a greater degree ol machine independence, compiler packed arrays

have been implementeds Arrayvs now have the following syntax:

Cope drvay = ARRAY name [dimension |

array layvout arvay pack types TTEM item list:

l\
arcay layout :x) S ‘ defauvlt is P
Q

N No packing

M Medium packing
array pack type =y D Dense packing

entry size) Specilied packing

é Detault is N

:) \ item dese.
item list = ea e Tt .
! item desc., item list ‘

QO

I
(
i S: Status Name ‘unspecificd array info.l‘
item desc .4 name \ B ' specified array info. ‘
C
R
D
o
! gL b ‘sin ' .
unspecified array info :=) o | item pack type
N
item pack type = M default is array pack type
(D \
(W)
specified array info. = (word, fbit, size)

The tollowing is an example of a4 compiler packed array:
¢ I)

ARRAY XY [1600] S8 D; ITENM

AB ¢ 3 N,
Ch I IS D,
EF U B

GH [T

1J B;

I'he tollowing allocation would result on the Honevwell machine:

Notice that AB was assigned a tull word since it called for no packing.

If the arrav is unspecified and one of its items is specilied, or vice versa, the

following crror message will be generated:

'INCONSISTENT WITH ARRAY!

i

PARAMETERIZED "DE ' STATEMENTS

"DEF" statements have been enhanced to allow for embedded parameters. The
following defines the syntax:

i : slem def
del dec = DE defname ‘—————(’ L “1_ '
_"'—lpurm def s

clem def = "char string" ;

S

char string .
(ch;u' string ‘

i

Where ¢ represents any punchable character. Two consecutive double quotes
represent a single double quote, Two consecutive exclamation points represent

a single one. Single exclamation points are not allowed.

parm def = (arm list) "parm string" k.

‘ parm list, }

' letter s

parm list

parm string parm string

parm string := form parm
char string

form purm = l!lelter
There must be a corresponding letter in the parameter list for each formal parameter.
When using the defined string, any unused parameters are replaced with null strings.
FFor example:

DEF ABC(X,Y,7) "THAT !X MAN!Y!X IF HE GOES!Z11"
If called with

ABC('"WELL', '"SPEAKS', "TOO SOON")

it becomes

THAT WELL MAN SPEAKS WELL I HIs GOES TOO SOON!
o)

e e

or it called with

ABC (, "IS IN TROUBLLE")
becomes

THAT MAN B IN TROUBLE IF HE GOES!
MULTIPLE ASSIGNMENTS

Replacement statements now allow for multiple sinks on the left side of the equal

sign(=), and have the tollowing syntax:

‘l_nsinl(

. L= oSouree;
'lun(' name ‘

rvpl;u'vnwnt statement =

f msink , sink ‘

| sink |

msink =

ALl sinks on the lett side of the equal sign (=) will take on the value of the source,
For example in
Al, XYZ3), BBB 0
all three varviables are set to zero,
COMPILER PHASES

Previously, the SYMPL compiler consisted of two phases (core overlavs): ANZR and
CODLEL CODE, the Largest phase, was broken into two smaller phases, CODIE and
ASMBL. - An additional scerateh tile has been allocated to accommodate the object
code intermediate information. These changes resulted in decreased core allocation,

Fhe comptler now occupies a 36K partition instead of the previous 43K partition,
FIELD ENTRACTION OPTINMIZ AT ION

A new optimization has been added to cause more etticient code to be generated when

assigning one field partial word table item) to another, For examploe:

AANQO) - BBEB ()

Assuming these variables were allocated as tollows,

ITEM AAA U@, 6, 8),

BBB U@, 18, S);
Uhen the tollowing code would have been genervated in the previous compiler:

LDQ BBB

QLS 1S Extract
QR a8 Position for Store
QLS 22

Using the new compiler, the tollowing code s gencrvatoed:

LDQ BBB

QLS 12 Position Only

Code sequences will vary, depending on whether the items ave signed or unsigned
and depending on the length ol the items with vespect to cach other. They will,
however, gencrate shorter code sogquences in most cases,

SWITCH OPTIMIZ ATION

Another optimization has been added (o decrease cove vequirements tor large
switeh hists @reater than 12 switeh points). Under the old tmplementation the
switeh value is used as an index into a jump tables Each entey of the jump table

contains a PR\ instruction which jumps to its corvesponding program label, This

implics that one wourd per switeh point is allocated i data space,

Under the new implementation, space is conservaed by assigning two switeh points
per word using only the address, The appropriate halt=word is loaded into a

register and an indexed transter occurs,

1o

ww“ R S e~ ‘

The following is an example of a jump table under both methods:

Old New
TRA Al ZERO Al, A2
TRA A2 ZERO A3, Al

TRA A3
TRA Al

. .
° .
. .

The new method requires slightly more overhead, so unless a switch list contains

more than 12 switch points, the old method is still used.
ERROR REPORTING

The following error messages have been added to accommodate the new compiler

features:

YINCORRECT USE OF DEF!
"TOO MANY PARAMETERS'
'INCONSISTENT WITH ARRAY'
'MALFORMED CODE FILE!
"MISSING ! END'

In addition, more error testing has been added to the expression scanner o report

previously undiagnosed errors.

. RS Y - i

FUTURE CONSIDERATIONS

The following enhancements to the SYMPL compiler could be implemented in the

future:

l.

A moditication to the language which would allow the
programmer to perform array element and array moves.

For example:

ARRAY ABC [100] S¢t);

ARRAY DEL [10] Pl);

ABC |85) = DE [3];

This would cause four words from a parallel table to be

moved to a serial table,

A re-evaluation ot code generated by the SYMPL compiler to
make use ol special instructions for better localized optimizations,

For example using AOS instruction in the case:
VAR = VAR t 1

Better code generated for compound 1F statementss The current
algovithm calls tor the evaluation of cach element of the compound
1I°, maintaining a Boolean value vepresenting the sense of the 1IF
condition. A better approach would be to jump out immediately

il an AND condition is talse or it an OR condition is true.

SUMMARY OF BENEFITS

Benetfits derived from the enhancements done on the SYMPL compiler not only have
made SYMPL a more portable and effective implementation tool, but have also
resulted in better code being generated for both SYMPL and JOVIAL. In some cases,
better local optimization occurs and, in the case of switches, more efficient data
packing occurs. In addition the systems programmer now has better debugging tools

and language features.

‘l

13

DOUBLE PRECISION

The JOCIT J3 compiler has been enhanced with a full double precision arithmetic
processing data structuring and diagnostic capability. These enchancements required
modification to the syntax tables, precognition processing (part of the analyzer),
pragmatic functions, direct code processing, allocation, code generator, editing and
library segments of the compiler within both the program and COMPOOL handling
sections. In addition, modifications to the SYMPL compiler were required to pro-
cess double precision declarations required for double precision compile-time pro-

cessing.
SYNTAX - VARIABLE DECLARATIONS

Both the compiler syntax (JSYN) and the COMPOOL syntax (CSYN) were modified to
recognize the following double precision syntactical contexts and to establish entry

points within the Pratmatic Function (PF1, PF2) segments of the compiler:
® Scalar declarations of the form
ITEM item-name D §
® Array declarations of the form
ARRAY array-name (dimension-list) D §

° Table item declarations for both ordinary and defined table declarations

of the basic form
ITEM table-item-name D. .. $
. Mode directives of the form
MODE D $
PRECOGNITION - CONSTANT RECOGNITION

The precognition segment of the compiler recognizes references to double precision

constants of the form

|context] LF D+ E [context]

14

Where I = interger portion

F= fractional portion

E= exponent
Examples: 0,025D

1.D4

1.27632D-10

Double precision constants are recognized in the following contexts:

° Arithmetic expressions

° Relational expressions

° Assignment statements

° Parameters

@ Presets {

The necessary modifications to the Preset Processor were minimal. The Preset
routine contains calls to KONS. The second parameter of each call was changed
from a value to the address of the value using the SYMPL 1LLOCN internal function,
There are also some cases where the call to KONS lies within a loop. Previously
the loop increment had been one in all cases. A double precision check has been
inserted in these places. 1f the test is true, the loop variable is set to two.
PRAGMATIC FUNCTIONS

The pragmatic functions PF1 and PF2 are defined as follows:

PF1- All expiicit and implicit (MODE) double precision declarations of scalars,
arrays and table items are posted to the Symbol Table during the first
syntactical pass (ANZ1). Double precision constant references that have
been parsed are resolved and posted to the Symbol Table as two-word

constants.

PF2- Double precision operand contexts are processed for required conversion
3

precedence determination, and legal context during the second syatactical

’—-————-————-———-—-—-——-—-—-—-——-—-—_————1

pass (ANZ72). Double precision is required to have the highest prece-
dence within arithmetic and relational expression contexts. Conversion
from or to double precision in assignment statements is dictated by the
mode of the receiving item. Conversion from or to double precision is
accomplished by generation of the appropriate intrinsic function within
the Intermediate language passed to the optimization and/or code genera-

tion phases of the compiler.
DIRECT CODE

'he routines which handle direct code were modified to allow double precision con-
stants, Since the compiler contains many status lists which deal with the type of
constants, each of these had to be updated to include a status value for double preci-
sion, The scanning routine was modified to allow constants containing the letter D.
I'he D indicates the end of the characterisite portion of the value and the beginning of
the mantissa. The rules which govern the syntax of single precision constants (using
the letter E instead), apply in the same manner. Double precision variables were

added to the compiler to internally develop the value of the constants.,
ALLOCATION

Double precision scalars and array declarations, exclusive of those declared in com-
mon, are linked to force allocation to an even-word addressing boundary for optimal
fetching and storage. The SLC chains are serially searched for occurrence of double

precision variables, and are relinked accordingly.
CODE GENERATOR

the code generator converts the input 11, sequence to a linked triad form, then pro-
cesses the triad table to generate output code to the code file. To generate double
precision code, the code generator takes advantage of the fact that for the host machine
of the JOCIT J3 compiler, the double precision floating point register overlaps the
single precision floating point register. Therefore, double precision floating point
follows the same code sequence as single precision floating point. In addition, a one

bit field DPFT in a triad table entry is used as a flag to indicate that this triad entry

16

fs a double precision primitive item, double precision value triad, or a double pre-
cision expression,

SETTING THE DPFT FLAG

The DPFT flag is set whenever:

¥ A double precision 1L operator or operand is encountered (e.g., RDEXP,

DPLUS or any data item with type S'DBL' in the symbol table),

2 An integer, single precision item is converted to or from a double preci-

sion item (e.g., DX, DRX).
3. A two-word temporary triad is created.
USE OF THE DPFT FLAG

Coanstant Handling

Constants are handled as follows:
¥ Uhe tront end routine PCON is used to post a double precision constant;
PICON is used to post the other constants,

2 I'he found value of the constant is returned in an arrvay torm, nstead of
just a one word item as previously, so that the second word ot a double
precision item can be retrieved.

3. The LOCN and ASEQ fields of constant entries in the Symbol Pable are
rearvanged in such a way that all double precision ttems arve grouped
together and come ahead of the other coanstants and literals., hus, the

Editor only needs to align the constants once.

Loading, Storing, or Other Avithmetic Operations

If the actual location of the two words in the double precision operand are not conti
guous (e. ., table item), three new routines accommodate the situations, as des-
cribed below,

1. DLOAD is called whenever a load instruction of a double precision item

needs to be generated. 1f the operand is a table item, a series of wstruc-
17

A

-

tions will be generated, e.g.:

LDA First Word

L.DQ Second Word
*STAQ Temp
*DFLD Temp

* (Not generated if the destination register is an AQ pair where temp

is a two word temporary location.)

Otherwise, a single instruction LDAQ or DFLD is generated, depend-

ing on the specified destination register.

DSTORE is called whenever a store instruction to a double precision
item needs to be generated. If the operand is a table item, a series of

instructions will be generated, e.g.:

[*LDAQ Temp *¥*]
STA First Word

STQ Second Word
* (Not generated if source register is an AQ pair.)

** (Temp was generated earlier in the program as a synonym of the

operand.)

Otherwise, a single instruction STAQ or DFST is generated, depending

on the specified source register.

DTLOAD is called before any arithmetic operation on a deouble preci-
sion table item is generated. It calls DLOAD to load the double preci-
sion operand. Later, if there is no immediate use of that item in the
P register, the SAVREG routine will store the computed table item
into a two word temp. Thus, the operation, except a store, will operate

on temp and will be treated as a non-table item.

18

'w - R ——

Double Precision Code Generation

In GENS where the actual code generation occurs, whenever a floating point code
sequence is encountered, the program will check to see if the DPFT flag is set, and

will generate double precision or single precision code accordingly.

1/0 Call and Exponentiation

The code generator calls the FORTRAN conversion library routine to handle
ENCODE and DECODE., Consequently, an entry point of . FOCNVD has been added
in the library voutine list in ICAL to handle double precision data conversion,
Similar entry points have been added for FORTRAN exponentiation library routine
calls to . FDXPI1, .FDXP2, .FDXP3, . FXDP1 to handle double exponentiation to

integer, double to double, double to real, and real to double exponentiation,

Fditor

Within the Editor phase a few procedures required modification. Switeh points were
added to accommodate double precision items, A double precision flag was added to
the calling sequence for the real to decimal conversion routine (RUOD)Y, RTOD will
now output double precision values with the letter D for double precision items

rather than an F oas with single precision items,

KONS was the routine requiring the most extensive moditication within the Fditor
phase. KONS is called to produce both listings and object code tor constants, The
second parameter in the calling sequence to KONS was changed from a value to the
address of a value., In this way, the routine could easily obtain the second word ot

a double precision constant, U the constant is a double precision type, the two
words are written te the object tile and the proper constant is output to the listing.
The TEMP chain is now reordered in the Fditor phase. The ASEQ tor this chain
was straightened so that the double precision temporaries would come tirst, tollowed
by all other types. This permits the double precision constants to be aligned on even

word boundaries (a system requirement),

19

l! e S * IR S N SRS 5 g

Run- I'ime Library

Only the JOVIAL monitor routine required modification in the Run-Time Library.
Previously, it did not have the capability to monitor double precision items. As
with the direct code processing, a double precision type was added to the internal
status list. A special code (bit flag) was added to the calling sequence produced by
the code generator. 1 the flag is true, the value being monitored is a double preci-
Sion item. In this event, the monitored value is output with the letter D rather than

an I as is done with single precision items,

20

N A B PR ==

NEW OPTIMIZER

A new optimizer was developed under the Improvements to JOCIT contract. This new
optimizer includes such capabilities as code straightening, dead variable analysis,
unreachable and unexitable code deletion, and several varieties of folding. It is pos-
sible to run the new optimizer independently from the old one. Either optimizer or

both optimizers may be executed during a given compilation.
DESIGN CONSIDERATIONS

The new optimizer uses a technique called P-graphing to collect information about
where a given variable is set or used. The P-graphing technique used is discussed
by Loveman [3] . The P-graph for a variable supplies answers to such questions as
"which generations affect the value of a given use of variable X?''" and "which uses of
variable X result from a particular generation?' In addition, if the P-graph is com-
plete (as it is in this particular optimizer), the optimizer answers questions such as

"is the variable X guaranteed to have the same value at point a as it is at point b?"

Rather than assuming that each variable is both set and used by every subroutine
called, an effort is made to maintain lists of variables actually used by internal pro-
cedures, so that generations and uses will not be created unnecessarily. This helps
not only to allow better code to be generated, but also to cut down on the size of the

data base.
P-graphing is a powerful technique because it pays attention only to program flow and

not to the way the program was written. For example, in the following program seg-

ment,

a
®
0

21

- - RIS SR ™

the old optimizer is unable to tell that the two uses of '"a'" (in blocks 1 and 3) result
from the same generation due to the fact that the branch at 2 is treated as uncondi-

tional. The new optimizer, however, does recognize the fact that the two uses have

e A

the same value. :

At the start of the project it was necessary to decide whether the best course of action
would be to attempt to add enhancements to the old JOCIT optimizer or to develop a
new optimizer with increased capability. The decision was made in favor of the new
optimizer for several reasons. First, P-graphing provides a more complete analysis
of data flow. This allows a higher degree of optimization since an optimizer should
only perform those optimizations which will not change the results of correct programs.
Obviously, then, the more that is known about the flow of data and control in a pro-
gram, the safer the cptimization. 3econdly, there have been reliability problems in
the past with the old optimizer, and an attempt to modify it could conceivably intro-
duce other problems. To avoid such problems and to take advantage of the data flow
information provided by P-graphing, a decision was made to adapt a design incorper-

ating P-graphing into the JOCIT system.

The original intent was for the new optimizer to supersede the old. However, there
was insufficient time to incorporate into the new optimizer a'l of the optimizations
performed by the old optimizer and the added optimizations. For this reason, the old
optimizer was retained and either optimizer or both can now be run. In the current
scheme, the old optimizer runs before the new one. (There is no option for the order
of execution.) This particular ordering was chosen primarily because the old optimizer
performs optimizations which depend on the existence of loop operators. The new
optimizer transforms loops into sequences of ordinary operators, so running the new
optimizer first would degrade the performance of the old vne with respect to loops. A
further advantage is that the new optimizer may generate sequences of 1L which-the

old one might not be prepared to handle. In fact, there were several interface pro-
blems between the new optimizer and the code generator. It is likely that the problems
would have been too numerous and too hard to remedy had the old optimizer been forced

to read the 1L produced by the new optimizer.

22

e e . -W, st e S VBT . TR
3 uh

:

TR T

B

OPTIMIZATIONS PERFORMED BY THE NEW OPTIMIZER

The following describes the optimizations performed by the new optimizer. Optimi-
zations performed by the old optimizer are not discussed here except to contrast the
results produced by each optimizer. Optimizations performed by the old optimizer

are documented in'the JOCIT workbook.
FOLDING -

Three types of folding are performed in the new optimizer: constant folding, scalar
folding and expression folding. These folding types derive their names from the value
types appearing on the right-hand side of the assignment statement. The occurrence
of a variable on the left-hand side of the assignment is a generation of that variable.
This optimizer is concerned only with assignments whose left-hand side is a scalar.

It would be possible to extend the folding the optimizer does to include array elements
but this would be difficult. While constants and scalars are properly classified as
expressions, the term '"'expression folding'' as used here is meant to exclude constants
and scalars and embrace only those expressions for which some actual computation is

performed.

The tnree types of folding involve replacing a use of the variable which was on the left-

hand side of the assignment by the right-hand side of the assignment. For example:

The main reason for the distinction between the types of folding involves the differ-
ences in when each can and should be applied. Constant folding can be applied to any
use (as opposed to a use/generation) of the generation since a constant has the same
value throughout the program. Scalar folding can be applied only when the value of
the scalar which was on the right side of the assignment has the same value at the
point of assignment as at the use. The following is an example of when sealar folding
can not be applied:

23

A = 3IN (X) A = SIN (X)
B=A B=A
A=Q > A=Q
C=7*B C=2Z*A

In this example, the value of A in line 4 is not the same as on line 2. Therefore, it

would be incorrect to substitute A for B here.

Expression folding is even more restricted than scalar folding. It is incorrect to
perform expression folding if the value of any of the components of the expression
differs between the generation and use occurrences of the scalar to which the expres-
sion was assigned. Also, it makes no sense to fold an expression onto two or more
uses since this would amount to uadoing common expression elimination. Therefore,

expression folding is performed only when there is exactly one use of the generation.

FFolding can be valuable for several reasons. Constant folding can allow the code
generator to make greater use of immediate instructions. Scalar folding can allow the
optimizer to find common expressions which have the same value but are not textually
the same: for instance, . . . X+Y . . . Z=Y$. . .X+Z. Note that since the new opti-
mizer does not currently perform common subexpression elimination, full advantage
is not being taken of folding. Folding also increases the possibilities for dead store
elimination by making dead any assignments which formally had uses. Folding can
also help the code generator to maintain values in registers, eliminating unnecessary
loads. Unfortunately, little is gained on the Honeywell machine due to the fact that
the contents of the A and Q register must be destroyed for all but the simplest compu-

tations.

There is an overlap between the folding done by the old and new optimizers. However,
the new optimizer performs folding in some cases in which the old one does not. One

example of such a case is shown above under '"P-graphing.'' Itis anIF., . . THEN . .

24

e = - - A T T ey S

\

ELSE construct, which might appear in JOVIAL as IFEITHA$ A=, . . ORIF 1. ..
A $. The old optimizer does not recognize that the two uses of A have the same value
and are unaffected by the assignment. The new optimizer recognizes that they result

from the same generator and would fold accordingly.

Dead variable analysis is performed for the scalars in each procedure. If, at some
time, a generator has no uses and the generation is the result of an assignment state-
ment, the assignment is deleted. White this optimization is performed for assignments
which are dead at the source level, it has a larger payoff with regard to assignments
which become dead due to the application of other optimizers such as folding. Con-~

sider the code sequence:

A = expression

IF A NQ Q

If this is the only use of that particular gemeration of A, the expression will be folded
into the 1F and the store will be deleted. Constant folding and scalar folding may also

create similar situations,

At the present time there is no prevision to deallocate variables which become unused
as the result of dead store elimination. A variable's P-graph contains sufficient infor-

mation so that an optimizer such as this could be added at a future date.
CODE STRAIGHTENING

One of the features of the new optimizer is code straightening. The purpose of the
code straightening as implemented here is to eliminate unnecessary GOTOs and to en-
sure that a block precedes all those blocks which it back dominates. Eliminating
unnecessary GOTOs saves execution time and space and aflows good code to be gen-

erated for conditionals without complicating the front end,

The code generator requires that value definitions (VALSs or VALDs) textually pre-
cede any uses (VALUs). In an unstraightened program it may be possible for a use to
logically follow a definition but to textually precede it. Code straightening, as imple-

9 5

.- ot R — e

\'

mented here, guarantees that a generation will procede its uses.

The algorithm used can be divided logically into two distincet parts. The first part

eliminates GOTOs to labeled GOTOs, The code sequence

GOTO 1.1
1.1. GOTO L2
is changed to
GOTO L2
1.1. GOTO L2

If at any point no references to L1 remain and there is no fall through, the GOTO at
1.1 is deleted. While such sequences are relatively rare in source code, this situation

does occur in the code which is generated for conditionals.

After GOTOs to GOTOs have been eliminated in the manner described above, the code
is reordered both to ensure that back dominators precede their dominatees and to
eliminate some more unnecessary GOTOs, starting from the program entry an attempt
is made to have each block followed textually by a btock which also follows it logically,
The logical successors of a block ending in a GOTO or Ts3T are examined. 1 one

such successor has not yet been ordered, it is placed immediately tollowing the block
being processed and the other successor, if any, placed on a list of candidates tor

future processing.

The following are examples of the types of optimizations performed:

1. Useless GOTO elimination:

=

L2,

GOTO L3%

e

L1.

GOTO L1$ —9 | GOTO L1%

S,

L2.

GOTO L3y

since the block containing the definition of 1.1 now follows the GOTO, that

GOTO is superfluous and can be deleted. The bloek containing 1.2 will be

placed somewhere else€following a reference to 1.2,

A Test reversal and GOTO elimination

TSST ¢ gll

]

i

gll,

GOTO 12 e oll,

where gll is a generated label,

v a

Since the fall through block after a TSST contains only a GOTO, the sense

of the TSST can be reversed and the target changed to branch divectly.

Since there are no other predecessors ol the GOTO, it can be deleted,
27

r—-"—"-—""'—""""'""—"—"—

Rp— " et ks e gt B
e T :

'he algorithm is complicated somewhat by the code generator's requirement that the

1L operator PTRM be both the physical and togical end of the program.

1t should be noted that the code straightening algorithm used is not that of Earnest,

et al. [1]. Since P-graphing eliminates much of the need for code straightening (in
the sense of moving code based on whether it is logically in a loop or not) it was pos-
sible to use a simpler algorithm, Inasmuch as the new optimizer, as currently imple-
mented, is not powertul enough to completely replace the old one, it may have been
better to have used the more complicated algorithm in order to enhance loop optimi-

zation.
CONSTANT ARITHMETIC

Constant arithmetic is also performed by the new optimizer. While the constant arith-
metic package is basically the one which appeared in the old optimizer, but modified
to work with the new optimizer's data base, some improvement in the optimization

obtained can be expected due to the broadened scope of constant folding.

I'he new optimizer deletes code which is found to be unreachable or unexitable. Un-
reachable code is code for which there exists no path from the entry point, Unexitable
code is code which provides no path to the exit. The analysis for these cases is per-
formed globally so that code which is labeled but unretferenced, as well as unlabeled
following an unconditional GOTO, is deleted. While most of the unreachable code
which has been tound in test cases so far has been the result of constant arithmetic
deleting tests, there have been some examples of unreachable code found in real pro-

grams.

I'he algorithm used to complete forward and back dominators tor the blocks in the flow
graph is based on an algorithm by Tarjan [5] and operates in O (n log n + ¢) where n

is the number of basic blocks in the program and e is the number of edges. 1n the
implementation used in the new optimizer, forward dominators are computed by re-
versing all of the edges in the graph and calculating "back dominators' for this re-
versed graph, starting from the exit. Tavian [6]has developed a faster algorithm
(almost linear) for calculating dominators. However, since the dominator calculation
is such a small part of the optimizer process, it is unlikely that changing to the newer

9N

v

algorithm would have an appreciable effect on compilation time,
OPTIMIZER WEAKNESSES

The new optimizer has two main weaknesses - it is relatively slow and requires large
amounts of core to handle large programs. These problems are explained at teast n
part by the fact that the optimizer is almost completely untuned at the present time,
The optimization process is iterative because performing one optimization may uncover
other optimizations which can be performed. PFor example, folding may allow constant
arithmetic to be performed in an 11 statement. 1t may then be possible to determine
that one branch of the IF is never taken which may allow some code to be deleted as
unreachable. This may allow additional folding to be done, ete, [t s possible to it
the number of iterations allowed at the cost of "overloading' some optimizations: how-

ever, no attempt has been made to do so at the preseat time.

The optimizer can be expected to be large due to the nature of its data base. In order

to perform global optimizations it is necessary to mamntain large amounts of informa- v
tion in core untess compite time is altowed to taerease wareasonablyv. There are o

number of in-core tables in this implementation which hold information about the source
program. All of the entries in a given table are contiguous, This allows smaller

pointers and, hence, smaller entry sizes, but this approach does require additional

work when a table is to be expanded as opposed to using a linked list table structure,

Tables are allocated in both phase space (an area the size of the ditfference of the sivzes
of the largest phase and the optimizer) and symbol table space. When a new table
entry is needed, it is obtained from the freed entry list of that table, af possible. 1
no entry can be determined there, an attempt is made to obtain the entry from the
unused space associated with the table. [f there is not enough room there, an attempt
is made to move the surrounding tables to obtain more space tor that table. 11 that
fails, then the unused space for the other table is returned. 1t there is still not enough
space, tables are shuffled from one area to the other in an attempt to obtain enough

space. Finally, if there is still not enough space and the symbol table has not been

expanded to its limit, a system call is made to obtain more space.

Rather than to force each routine which creates table entries to check, each time the
space manager returns, to see if there really was enough space to satisfy the request,
a block of space in each area is held in the reserve. This, at least in theory, allows
the module which is currently executing to terminate gracefully. Then, between mod-
ules, a check is made to see whether or not the reserve has been used. If so, appro-
priate action can be taken. If the space manager is unable to satisfy a request after

the reserve has been used, it is forced to terminate the compilation.

In practice, a number of large programs have caused the reserve to be exhausted and
compilation to be terminated. Experimentation with the size of the reserve would pro-
bably lead to a size which would allow larger programs to be compiled in a given core
size. Each routine which calls the space handler would provide it with an address of

a routine which could allow a more graceful exit when there is no more available space.
An even better method would be to devise a scheme in which pieces of programs could
be optimized. This could require considerable work, however, and there was insuffi-

cient time to investigate any of these possibilities to any extent.

There were several problems which made the final result less than it might have been
under ideal circumstances. Perhaps the most important of these was the lack of good
interactive debugging facilities on T3S, An interactive debugger such as PCF on CSTS
or DDT on the DEC-10 could have made the job significantly easier. A good deal of
effort was spent building in debugging dumps and traces. While these proved valuable
in the debugging effort and could not have been eliminated entirely, even if an on-line
debugger had been available, the space occupied by the debugging routines was used
for data when none of the debugging options were on. This caused some difficulties

in reproducing bugs, however, because some problems which occurred when there
were no debugging options on were masked with debugging on because the compilations

ran out of space before the problem occurred.

The debugging features developed include formatted table dumping, tracing (at 4 differ-
ent levels) and data change monitoring. Formatted dumps of all of the major tables
in the optimizer are available during the execution of the compiler and all tables are

dumped if an internal inconsistency (OERROR) is detected.

30

Tracing is also triggered by control card option and CONTROL statement. The levels

of tracing available are major module, routines within major modules, utility, and
low level utility. Through use of the CONTROL statement, tracing can be varied for

each procedure being compiled.

Data change monitoring is available for specific core locations and for table entires.
Whenever a traced subroutine is called, the old value for the item being moaitored

is compared with the current value. A dump of the item is produced if there has been
a change. Data change monitoring is available only through the use of the CONTROL.

statement.

The other major diificulty arose because of a lack of available disk space. Due to
the fact that there was only space enough for one optimizer compiler for the bulk of
the time, it was necessary to link all new (and unstable) modules into one compiler.
This meant that evervone had to contend with evervone else's bugs. Things would
have gone smoother had it been possible to debug unstable modules individually and to

""make public' only those modules which were stable.

This problem was circumvented to a certain exteat by introducing control card options
to allow certain modules (e.g., folding) to be bypassed. In other cases (for example,

when the space manager was modified) this could not be done.

Several interesting and as vet unanswered questions have been raised as a result of
the work on this project. One concerns a possibly novel approach to optimization,

Another concerns the manipulation of P-graphs.

At the start of the project the possibility of using Kirchoff's laws [3]to obtain relative
frequences of execution for the various blocks in a program was investigated. Kir-
choff's law was stated with regard to electrical circuit theory and sayvs "flow in =

flow out." In the case of flow graphs, we also know that the flow along any path is

non-negative. It is easy to deduce local information.

- L . G I
e m—— - T

If we let F. stand for the flow into (or out of) hlocki and fii be the flow from block i
i |

to block) then !“l ~ l~‘: and l"1 E l-‘:; since 1-‘: = 1'1: and l-‘3 = fl:i

and all of the \'“ = 0,

Rnd B wif - off

1 12 13
It is difficult to determine the relationships between blocks which are the relations to
be determined and which indicate whether or not it is possible to tell anvthing definite
about the relationship. (in the flow diagram above, it is impossible to tell whether
2 or 3 has a higher frequency of execution without knowing something about the pro-

bability of taking one branch or the other at 1).

Relative flow frequencies are important because it is desirable to move code from a
region of high frequency to a region of lower frequency. By calculating frequencies,
it mayv be possible to perform code motion without regard to formal loops. It should
be noted, however, that this method has drawbacks. No definite relationship can be
established between the predecessor of a DO WHILE loop and the code within the loop

itself. For example:

(4

No relationsnip can be established between 1 and 3, This is correct because 1 may be
executed while 3 1s not (1 - 3) or 3 may be executed many times while 1 is executed
only once (3~ 1),

It is not clear how time-consuming the calculation of trequencies would be or what

the pavoft, if anv, would be in terms of improved optimization. No attempt was made
to program the frequency evaluator or to prove that it would work in all cases due to
the timited time available for implementation.

Another interesting question concerns P-graphing. Although no empirical evidence
has been gathered with respect to the new optimizer, it would appear that P-graphing

32

el

N

takes a sizeable amount of the time required for optimization, Since the algorithm

used in this optimizer was originally developed, an algorithm which is faster (at teast
for very large programs) has been published [2] . Whether it would be faster for

programs which are small enough to be optimized is not obvious.

There may be another approach which could prove fruitful. Common variables tend
to have P-graphs which are basically the same -- composed chiefly of implicit uses
and generations at calls to external procedures and a relatively small number of uses
elsewhere. Would it be possible to construct a basic P-graph template to obtain the
P-graph for each individual variable? 1f so, would it be faster than constructing the

P-graph from scratch?

Although a comprehensive performance analvsis of the new optimizer was not carried

out, some figures are available with respect to the J series test cases. There are

roughly 100 such test cases. Of those for which compilation statistics are available

(76), the smallest was under 20 source lines, and the larger programs were between

100 and 150 source lines. Object sizes ranged from 35 (octal) words to 3651 words

unoptimized and 35 to 2677 optimized. (These figures exelude COMPOOL, compila-
e

tions which are not optimizable.) Compilation times ranged from . 0003 to . 0035 un-
tal

‘optimized and . 0004 to . 0097 optimized.

In 61 cases the optimized code was smaller, in 11 cases there was no change, and in
9 cases the optimized code was larger. In absolute terms the best test case was one
which shrank from 2175 to 601 words. Percentagewise, the best results were obtained
with a program which was 304 words unoptimized and 53 words optimized. A total of

29 test cases experienced what could be deseribed as significant reductions in size

(defined here as 100\ words),

The largest degradation was ”- words. This 1s due to the fact that the code generator
does not remember the length of a Hollerith function which has been VAL Sed and is
forced to generate a subroutine call rather than use an ElIs instruction. Other increases
in the generated code are due to the fact that, on the Honevwell machine, it takes one
instruction to increment memory, but two instructions to add one to a register and

store the value, In addition, there were 16 programs in which there was only a

33

1?

smal! decrease (1—20\ words) in program size.

Thus, a substantial reduction in size occurred in 29 cases, and there were no signifi-
cant changes in 31 cases. It should be cautioned, however, that test cases tend to be
more amenable to optimization than actual programs. It is unlikely that any real pro-
grams would exhibit the size reductions of nearly 50% which were exhibited in 12 of
the test cases. It is also unlikely that real programs would show the sort of degrada-
tions which occurred in four test cases. Real programs can be expected to show a

modest improvement in most cases, if not all.
POSSIBILITIES FOR FUTURE TMPROVEMENTS TO THE OPTIMIZER

The new optimizer is probably more significant for the potential it provides than for
the optimizations it actually performs. The new optimizer enhances the folding and
constant arithmetic capabilities of the JOCIT compiler and adds code straightening
and dead store elimination. It provides a degree of optimization for some programs
which were formerly unoptimizable under the JOCIT system (notably the 14 SAC pro-
grams).

More importantly, however, it provides a base to which more powerful optimizations
and additional diagnostic capabilities can be added. The following is a list of possible
additions and improvements. It is not intended to be exhaustive, but merely to pro-

vide an idea of what could be done.

i The optimizer can use some tuning and improvements with respect to
compilation time and space required. 3Some improvement could be seen
with minor testing and modification. The size of the compiler and size of
the reserve could be specified by control card options. Modifying the opti-
mizer so that it could optimize sections of code would require a significant

amount of work, but it would enable larger programs to be compiled.

(8}
.

Loop optimizations could be added. Currently the old optimizer performs
all of the Joop optimizations for JOCIT. There is some code for code re-
distribution in the new optimizer but it is incomplete and, therefore, by-

passed. The approach to loop optimization could be the conventional ap-

proach or the experimental approach based on execution frequencies.
34

RIS o ek AR W‘- .

Folding could be extended to include array references and overlaid vari-

ables. Overlaid variables could be handled by combining their P-graphs.

Handling array references would be more complex.

An improved register allocation scheme could be developed. The P-graph
for a variable provides sufficient information to determine what variables
are good candidates to be assigned to registers. At present, most of this
information is lost because the code operator assigns registers and the
P-graphs no longer exist when registers are assigned. Only that informa-
tion which can be transmitted via the VALD/VALS/VALU mechanism sur-
vives. A global register allocation algorithm would be a major undertak-
ing. However, there are some smaller changes which could be made at

a lesser cost:

a. VALS3s or VALDs could be created for merges as well as genera-

tions. This could result in better code for item switches.
b. VALDs could be generated for parameters.

c. VALDs could be used instead of VALSs in some cases to eliminate

unnecessary stores.

It should be noted, however, that these modifications would have a greater

affect on a machine with more registers than the Honeywell machine.

It would be possible to diagnose cases in which a variable may be used
before it is set. A variable P-graph together with an indication of whether
the variable is preset provides sufficient information to detect this condi-

tion.

Self tests (e.g., A EQ A) and self assignments (e.g., A = A) can be deleted

with relative ease. Self tests occur in some forms of FOR loops.

The code for Hollerith functions coutd be improved if the code generator
remembered the length of the result of a function which was VALS3ed. This

would enable EI3 instructions to be used in place of a subroutine call.

e — T R I 5

hicar s

8. The user interface could be cleaned up in several cases. some of the
OERROR messages could be replaced by messages which would be more
J meaningful to users. The present OPT options tend to be more historical

than logical, The options and defaults could be reassigned to make the

optimizer easier to use.

36

|
8

Gl

Y

b o oy

1.

BIBLIOGRA PHY

Earnest, Blake and Anderson, "Analysis of Graphs by Ordering of Nodes,

"JACM, vol, 19, no. 1, Jan. 1972, pp. 23-42.

Karr, Michael, P-graphs, Report CAID-7501-1551, Massachusetts

Computer Associated, Wakefield, Mass.

Knuth, D. E., The Art of Computer Programming, vol. I., Fundamental

Algorithms, Addison-Wesley. Reading, Mass,, 1965, P, 167.

Loveman and Faneuf, "Program Optimization - Theory and Practice. "
Proceedings of a Conference on Programming Languages and Compilers
for Parallel and Vector Machines, SIGPLAN Notices, vol. 10, no. 3,
March 1975, pp. 97 - 102,

Tarjan, Robert E., "Edge-Disjoint Spanning Trees, Dominators and
Depth-First Search, "Stanford University Computer Science Department
Technical Report STAN=-CS-74-465, Sept. 1974, p. 40.

Tarjan, Robert E., "Solving Path Problems on Directed Graphs, ' Stanford

Computer Science Department, Technical Report STAN-CS-75=528, Oct, 1975.

A R TTII e = V

[P — — ‘1

APPENDIX A - JCVS and SAC Program Comparisons

The following table presents a comparison of the various modes of compilation for

the JCVS tests. There are four categories:

—

a. No optimization (NOPT)
' b. Old optimizer (OPT/1/)
c. New optimizer (OPT/2/)
d. Combined old and new optimizers (01"1‘/12/)

There was essentially no difference between the old compiler and the new compiler
in the NOPT and OPT/1/ modes, but this was expected since no changes were
planned in that area. Therefore, only the above modes are compared in the new

compiler. The compile times shown are seconds and the sizes of the object code v

are in decimal. The asterisk indicates a fatal error.

Time (seconds) Size (decimal)
JCVS
Test NOPT OPT/1/ OPT/2/ OPT/12/ NOPT OPT/1/ OPT/2/ OPT/12/
CLASS1
Cl1 31.3 16,1 . 115.9 2107 1870 * 1664
C2 28. 4 10,0 . 79.6 1839 1594 * 1406
C3 35.6 61.2 * * 2792 2077 * *
1 27.4 39.2 132.1 * 2004 1770 1694 *
CH 32.0 19.0 * . 2109 1855 * .
C6 36. 7 55. 8 * * 2421 2150 * .

38

T A A AR

Time (seconds) Size (decimal)

JCVS
Test NOPT OPT/1/ OPT/2/ OPT/12/ NOPT OPT/1/ OPT/2/ OPT/12/

CLASS2 (This class tests error detection capabilities of the compiler)

ER1 19.4 * 65.9 o 1046 * 991 *
ER2 1.1 1.1 1.1 1.4 4 4 4 4
ER3 This test deliberately produces a fatal error - all modes operated in the

same manner.

ER4 1.1 1.1 1.1 1.4 5 5 5 5
ER5 1.1 154 1.4 1.4 7 6 4 4
Compool Test

COMP 1.8 1.8 1.8 1.8 109 109 109 109
CTST 3.2 4.3 4.3 7.2 215 176 176 176
PA 1.1 1.1 1.1 1.4 27 6 16 6
PB 1.1 1.1 1.1 1.4 18 6 G 6
CP1 il ol i T 5 5 5 5
CP2 wh .7 o7 .7 0 0 0 0
TSTCP 1.8 2.2 2.2 2.9 89 75 75 75

39

Time (seconds) Size (decimal)

i(e:ts NOPT _OPT/1/ OPT/2/ OPT/12/ NOPT OPT/1/ OPT/2/ OPT/12/
A Series
TEOL 2.2 2.9 3.6 4.3 119 108 108 104
TEO02 2.5 3.2 4.3 5.0 124 123 123 123
TEO03 2.2 3.2 3.6 4.9 146 143 143 143
TEO4 1.4 2.2 2.5 2.9 63 64 58 61
TEO0S 2.5 3.2 t.0 5.0 97 97 96 96
TEO06 2.2 2.9 3.2 4.0 3185 3177 3188 3180
TEO7 1.1 1.4 1.4 1.8 24 24 24 24
TEOS 2.5 2.9 3.6 4.3 157 153 155 155 1
TEO09 0.4 T2 6.8 9T 569 505 503 502
TE10 1.8 242 2.5 2.9 66 62 60 59
TE11 6.5 8.3 10.8 14.4 620 394 426 370
TE12 1.4 1.8 1.8 2.2 52 52 48 54
10
= I — il

Time (seconds) Size (decimal)
JCVS
Test NOPT OPT/1/ 0OPT/2/ OPT/12/ NOPT OPT/1/ OPT/2/ OPT/12/
B Series
TE14 2.9 4.0 5.8 6.1 189 187 190 190
TE15 2.2 2.9 3.2 4.3 219 213 221 215
TPOL 1.2 1.1 Bt 1.1 21 21 21 21
TE20 1.4 2.2 2.2 2.9 148 51 46 48
IFFR .7 7 o W 1 1 1 1
FRIF 1.4 2.2 2.5 3.2 64 63 63 63
BMLO 2.2 2.5 2.9 3.6 113 113 113 113
MINU 1.4 1.8 1.8 2.2 55 47 55 16
STCT 1.1 1.1 1.1 1.4 1 4 1 1
LABL i1 1.4 1.4 1.8 10 10 10 10
TABL 2.8 2.9 3.2 3.6 165 164 164 164
CSTP o7 1.1 | P 1.4 3 3 3 3
DEFI 1.4 1.8 2.5 2.9 48 16 50 16
PRES 3.1 1.4 1.4 1.8 31 31 31 31
TRAN 1.4 1.8 1.8 2.2 56 56 56 56

SRR NS R

; Time (seconds) Size (decimal)
y JCVS
Test NOPT OPT/1/ OPT/2/ OPT/12/ NOPT OPT/1/ OPT/2/ OPT/12/
;
C Series
CAPY 8.3 9% 16.9 18.4 445 409 380 380
DIR1 6.1 7.6 10, 4 14.0 487 346 335 347
DIRE 13.3 17.3 44,6 58.0 1229 995 984 984
STC 5.0 5.8 T.2 8.3 599 549 572 554
STOP 2.5 3.2 4,0 4.3 163 161 161 161
CLOS 2.9 4,0 5.0 6.1 197 185 188 187
MODE 4.3 5.4 6.8 T 270 262 263 263
WORD e 2.2 2.5 249 82 82 82 82 :
LSWD 1.4 1.8 2o 2.5 66 66 66 66
ABS 2.2 2.9 3.6 4.3 137 119 116 115
BLNK 1.4 1.8 1.8 2.5 74 T4 74 74
LLIT 10.1 14.8 16,6 23.0 977 941 936 935

The following table gives the compile time in seconds and the size of the generated
object code in decimal for fourteen SAC programs that had fatal errors on the old
optimizer. These results were not obtained with the latest version of the compiler
produced under this contract, since the SAC programs were removed from the

disk earlier. However, the values should be a good indication of the expected

results with the latest compiler. An asterisk indicates a fatal error.

Time (seconds) Size (decimal)

SAC
Program NOPT _OPT/1/ OPT/2/ OPT/12/ NOPT OPT/1/ OPT/2/ OPT/12/

BPAD 9.0 *+ 19.1 ¥ 508 . 178 .
BPBD 137.5 x* 1110.2 o 8345 o 7588 o
BPCD 97.2 * (570, 2 e 7268 R G394) .
BPDD 29,5 . 120,2 o 2068 o 1836 .
BPED 47.9 o 178.2 o 3339 o 3127 .
BPFD 111.2 * 718.2 ¥ 6799 o 6349 o
BPID 114.8 o 814.0 o+ 9847 o 8405 w
BPOR 32.8 o+ 140.0 . 2422 . 2259 o
BPPR 28.8 s 156.6 . 1984 . 1900 .
BPQR 88.9 L 581.0 . 7002 o 6482 **
BPSA 32,0 *» 118.4 o 2627 s 2539 s
BPTR 112,7 ** 1385.3 . 8539 o 7399 o
BPUR 64.8 AL 192.6 o 1766 . 1682 .
BPVR 30.6 > 158, 4 . 6224 . 6108 e

The double asterisks indicate that the compilation for those modes was not attempted
after some corrections had been made to the old optimizer. Therefore, the status
of those modes is unknown until the SAC programs can be restored to the disk and
retried with the new compiler. Previously, however, all of the fourteen SAC pro-

grams had fatal errors in the old compiler.

The program BPCD is shown with a fatal error under the OPT 2" mode. Earlier

it had been compiled successfully in 570. 2 seconds and generated ﬁ:m»lw words of

43

V

object code. Since that compilation, however, the upper limit to which the compiler

was allowed to grow during a compilation was lowered. This apparently caused a
lack of sufficient table space to successfully complete the compilation of BPCD, A
similar situation occurred with a number of the CLLASS 1 JCVS tests compiled under

the OPT/12/ mode.

44

—

31

823 23 2323 232323232323 23 23 23 L)

MISSION
of
Rome Air Development Center
RADC plans and conducts research, exploratory and advanced
3

dowlomnt programs in command, control, and communications
(C) activities, and in the ¢ areas of informatior sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
survelllance of ground and aerospace objects, intelligence
data collection and handling, information system technology.,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

~‘c,_\,ﬂ l°~

&'ﬁ" 31“3'30

o m~‘°¢

”» 0. ‘.10

